einops package logo
[github],    tutorials [1] and [2]

Writing a better code with pytorch and einops



Rewriting building blocks of deep learning

Now let's get to examples from real world. These code fragments taken from official tutorials and popular repositories.

Learn how to improve code and how einops can help you.

Left: as it was, Right: improved version

# start from importing some stuff
import torch
import torch.nn as nn 
import torch.nn.functional as F
import numpy as np
import math

from einops import rearrange, reduce, asnumpy, parse_shape
from einops.layers.torch import Rearrange, Reduce

Simple ConvNet

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

conv_net_old = Net()
conv_net_new = nn.Sequential(
    nn.Conv2d(1, 10, kernel_size=5),
    nn.MaxPool2d(kernel_size=2),
    nn.ReLU(),
    nn.Conv2d(10, 20, kernel_size=5),
    nn.MaxPool2d(kernel_size=2),
    nn.ReLU(),
    nn.Dropout2d(),
    Rearrange('b c h w -> b (c h w)'),
    nn.Linear(320, 50),
    nn.ReLU(),
    nn.Dropout(),
    nn.Linear(50, 10),
    nn.LogSoftmax(dim=1)
)

Reasons to prefer new implementation:

Super-resolution

class SuperResolutionNetOld(nn.Module):
    def __init__(self, upscale_factor):
        super(SuperResolutionNetOld, self).__init__()

        self.relu = nn.ReLU()
        self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
        self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
        self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
        self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

    def forward(self, x):
        x = self.relu(self.conv1(x))
        x = self.relu(self.conv2(x))
        x = self.relu(self.conv3(x))
        x = self.pixel_shuffle(self.conv4(x))
        return x
def SuperResolutionNetNew(upscale_factor):
    return nn.Sequential(
        nn.Conv2d(1, 64, kernel_size=5, padding=2),
        nn.ReLU(inplace=True),
        nn.Conv2d(64, 64, kernel_size=3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(64, 32, kernel_size=3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(32, upscale_factor ** 2, kernel_size=3, padding=1),
        Rearrange('b (h2 w2) h w -> b (h h2) (w w2)', h2=upscale_factor, w2=upscale_factor),
    )

Here is the difference:

Restyling Gram matrix for style transfer

Original code is already good - first line shows what kind of input is expected

def gram_matrix_old(y):
    (b, ch, h, w) = y.size()
    features = y.view(b, ch, w * h)
    features_t = features.transpose(1, 2)
    gram = features.bmm(features_t) / (ch * h * w)
    return gram
def gram_matrix_new(y):
    b, ch, h, w = y.shape
    return torch.einsum('bchw,bdhw->bcd', [y, y]) / (h * w)

It would be great to use just 'b c1 h w,b c2 h w->b c1 c2', but einsum supports only one-letter axes

Recurrent model

All we did here is just made information about shapes explicit to skip deciphering

class RNNModelOld(nn.Module):
    """Container module with an encoder, a recurrent module, and a decoder."""
    def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.5):
        super(RNNModel, self).__init__()
        self.drop = nn.Dropout(dropout)
        self.encoder = nn.Embedding(ntoken, ninp)
        self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout)
        self.decoder = nn.Linear(nhid, ntoken)

    def forward(self, input, hidden):
        emb = self.drop(self.encoder(input))
        output, hidden = self.rnn(emb, hidden)
        output = self.drop(output)
        decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2)))
        return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden
    
class RNNModelNew(nn.Module):
    """Container module with an encoder, a recurrent module, and a decoder."""
    def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.5):
        super(RNNModel, self).__init__()
        self.drop = nn.Dropout(p=dropout)
        self.encoder = nn.Embedding(ntoken, ninp)
        self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout)
        self.decoder = nn.Linear(nhid, ntoken)

    def forward(self, input, hidden):
        t, b = input.shape
        emb = self.drop(self.encoder(input))
        output, hidden = self.rnn(emb, hidden)
        output = rearrange(self.drop(output), 't b nhid -> (t b) nhid')
        decoded = rearrange(self.decoder(output), '(t b) token -> t b token', t=t, b=b)
        return decoded, hidden

Channel shuffle (from shufflenet)

def channel_shuffle_old(x, groups):
    batchsize, num_channels, height, width = x.data.size()

    channels_per_group = num_channels // groups
    
    # reshape
    x = x.view(batchsize, groups, 
        channels_per_group, height, width)

    # transpose
    # - contiguous() required if transpose() is used before view().
    #   See https://github.com/pytorch/pytorch/issues/764
    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x
def channel_shuffle_new(x, groups):
    return rearrange(x, 'b (c1 c2) h w -> b (c2 c1) h w', c1=groups)

While progress is obvious, this is not the limit. As you'll see below, we don't even need to write these couple of lines.

Shufflenet

from collections import OrderedDict

def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()

    channels_per_group = num_channels // groups
    
    # reshape
    x = x.view(batchsize, groups, 
        channels_per_group, height, width)

    # transpose
    # - contiguous() required if transpose() is used before view().
    #   See https://github.com/pytorch/pytorch/issues/764
    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x

class ShuffleUnitOld(nn.Module):
    def __init__(self, in_channels, out_channels, groups=3,
                 grouped_conv=True, combine='add'):
        
        super(ShuffleUnitOld, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.grouped_conv = grouped_conv
        self.combine = combine
        self.groups = groups
        self.bottleneck_channels = self.out_channels // 4

        # define the type of ShuffleUnit
        if self.combine == 'add':
            # ShuffleUnit Figure 2b
            self.depthwise_stride = 1
            self._combine_func = self._add
        elif self.combine == 'concat':
            # ShuffleUnit Figure 2c
            self.depthwise_stride = 2
            self._combine_func = self._concat
            
            # ensure output of concat has the same channels as 
            # original output channels.
            self.out_channels -= self.in_channels
        else:
            raise ValueError("Cannot combine tensors with \"{}\"" \
                             "Only \"add\" and \"concat\" are" \
                             "supported".format(self.combine))

        # Use a 1x1 grouped or non-grouped convolution to reduce input channels
        # to bottleneck channels, as in a ResNet bottleneck module.
        # NOTE: Do not use group convolution for the first conv1x1 in Stage 2.
        self.first_1x1_groups = self.groups if grouped_conv else 1

        self.g_conv_1x1_compress = self._make_grouped_conv1x1(
            self.in_channels,
            self.bottleneck_channels,
            self.first_1x1_groups,
            batch_norm=True,
            relu=True
            )

        # 3x3 depthwise convolution followed by batch normalization
        self.depthwise_conv3x3 = conv3x3(
            self.bottleneck_channels, self.bottleneck_channels,
            stride=self.depthwise_stride, groups=self.bottleneck_channels)
        self.bn_after_depthwise = nn.BatchNorm2d(self.bottleneck_channels)

        # Use 1x1 grouped convolution to expand from 
        # bottleneck_channels to out_channels
        self.g_conv_1x1_expand = self._make_grouped_conv1x1(
            self.bottleneck_channels,
            self.out_channels,
            self.groups,
            batch_norm=True,
            relu=False
            )


    @staticmethod
    def _add(x, out):
        # residual connection
        return x + out


    @staticmethod
    def _concat(x, out):
        # concatenate along channel axis
        return torch.cat((x, out), 1)


    def _make_grouped_conv1x1(self, in_channels, out_channels, groups,
        batch_norm=True, relu=False):

        modules = OrderedDict()
        conv = conv1x1(in_channels, out_channels, groups=groups)
        modules['conv1x1'] = conv

        if batch_norm:
            modules['batch_norm'] = nn.BatchNorm2d(out_channels)
        if relu:
            modules['relu'] = nn.ReLU()
        if len(modules) > 1:
            return nn.Sequential(modules)
        else:
            return conv


    def forward(self, x):
        # save for combining later with output
        residual = x
        if self.combine == 'concat':
            residual = F.avg_pool2d(residual, kernel_size=3, 
                stride=2, padding=1)

        out = self.g_conv_1x1_compress(x)
        out = channel_shuffle(out, self.groups)
        out = self.depthwise_conv3x3(out)
        out = self.bn_after_depthwise(out)
        out = self.g_conv_1x1_expand(out)
        
        out = self._combine_func(residual, out)
        return F.relu(out)
class ShuffleUnitNew(nn.Module):
    def __init__(self, in_channels, out_channels, groups=3, 
                 grouped_conv=True, combine='add'):
        super().__init__()
        first_1x1_groups = groups if grouped_conv else 1
        bottleneck_channels = out_channels // 4
        self.combine = combine
        if combine == 'add':
            # ShuffleUnit Figure 2b
            self.left = Rearrange('...->...') # identity
            depthwise_stride = 1
        else:
            # ShuffleUnit Figure 2c
            self.left = nn.AvgPool2d(kernel_size=3, stride=2, padding=1)
            depthwise_stride = 2
            # ensure output of concat has the same channels as original output channels.
            out_channels -= in_channels
            assert out_channels > 0

        self.right = nn.Sequential(
            # Use a 1x1 grouped or non-grouped convolution to reduce input channels
            # to bottleneck channels, as in a ResNet bottleneck module.
            conv1x1(in_channels, bottleneck_channels, groups=first_1x1_groups),
            nn.BatchNorm2d(bottleneck_channels),
            nn.ReLU(inplace=True),
            # channel shuffle
            Rearrange('b (c1 c2) h w -> b (c2 c1) h w', c1=groups),
            # 3x3 depthwise convolution followed by batch 
            conv3x3(bottleneck_channels, bottleneck_channels,
                    stride=depthwise_stride, groups=bottleneck_channels),
            nn.BatchNorm2d(bottleneck_channels),
            # Use 1x1 grouped convolution to expand from 
            # bottleneck_channels to out_channels
            conv1x1(bottleneck_channels, out_channels, groups=groups),
            nn.BatchNorm2d(out_channels),
        )        
        
    def forward(self, x):
        if self.combine == 'add':
            combined = self.left(x) + self.right(x)
        else:
            combined = torch.cat([self.left(x), self.right(x)], dim=1)
        return F.relu(combined, inplace=True)

Rewriting the code helped to identify:

Other comments:

Simplifying ResNet

class ResNetOld(nn.Module):

    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNetOld, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)

        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x
def make_layer(inplanes, planes, block, n_blocks, stride=1):
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        # output size won't match input, so adjust residual
        downsample = nn.Sequential(
            nn.Conv2d(inplanes, planes * block.expansion,
                      kernel_size=1, stride=stride, bias=False),
            nn.BatchNorm2d(planes * block.expansion),
        )
    return nn.Sequential(
        block(inplanes, planes, stride, downsample),
        *[block(planes * block.expansion, planes) for _ in range(1, n_blocks)]
    )


def ResNetNew(block, layers, num_classes=1000):    
    e = block.expansion
    
    resnet = nn.Sequential(
        Rearrange('b c h w -> b c h w', c=3, h=224, w=224),
        nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
        nn.BatchNorm2d(64),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
        make_layer(64,      64,  block, layers[0], stride=1),
        make_layer(64 * e,  128, block, layers[1], stride=2),
        make_layer(128 * e, 256, block, layers[2], stride=2),
        make_layer(256 * e, 512, block, layers[3], stride=2),
        # combined AvgPool and view in one averaging operation
        Reduce('b c h w -> b c', 'mean'),
        nn.Linear(512 * e, num_classes),
    )
    
    # initialization
    for m in resnet.modules():
        if isinstance(m, nn.Conv2d):
            n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            m.weight.data.normal_(0, math.sqrt(2. / n))
        elif isinstance(m, nn.BatchNorm2d):
            m.weight.data.fill_(1)
            m.bias.data.zero_()
    return resnet

Changes:

Improving RNN language modelling

class RNNOld(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout):
        super().__init__()
        
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, 
                           bidirectional=bidirectional, dropout=dropout)
        self.fc = nn.Linear(hidden_dim*2, output_dim)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x):
        #x = [sent len, batch size]
        
        embedded = self.dropout(self.embedding(x))
        
        #embedded = [sent len, batch size, emb dim]
        
        output, (hidden, cell) = self.rnn(embedded)
        
        #output = [sent len, batch size, hid dim * num directions]
        #hidden = [num layers * num directions, batch size, hid dim]
        #cell = [num layers * num directions, batch size, hid dim]
        
        #concat the final forward (hidden[-2,:,:]) and backward (hidden[-1,:,:]) hidden layers
        #and apply dropout
        
        hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1))
                
        #hidden = [batch size, hid dim * num directions]
            
        return self.fc(hidden.squeeze(0))
class RNNNew(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout):
        super().__init__()
        
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, 
                           bidirectional=bidirectional, dropout=dropout)
        self.dropout = nn.Dropout(dropout)
        self.directions = 2 if bidirectional else 1
        self.fc = nn.Linear(hidden_dim * self.directions, output_dim)
        
    def forward(self, x):
        #x = [sent len, batch size]        
        embedded = self.dropout(self.embedding(x))
        
        #embedded = [sent len, batch size, emb dim]
        output, (hidden, cell) = self.rnn(embedded)
        
        hidden = rearrange(hidden, '(layer dir) b c -> layer b (dir c)', 
                           dir=self.directions)
        # take the final layer's hidden
        return self.fc(self.dropout(hidden[-1]))

Writing FastText faster

class FastTextOld(nn.Module):
    def __init__(self, vocab_size, embedding_dim, output_dim):
        super().__init__()
        
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.fc = nn.Linear(embedding_dim, output_dim)
        
    def forward(self, x):
        
        #x = [sent len, batch size]
        
        embedded = self.embedding(x)
                
        #embedded = [sent len, batch size, emb dim]
        
        embedded = embedded.permute(1, 0, 2)
        
        #embedded = [batch size, sent len, emb dim]
        
        pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1) 
        
        #pooled = [batch size, embedding_dim]
                
        return self.fc(pooled)
def FastTextNew(vocab_size, embedding_dim, output_dim):
    return nn.Sequential(
        Rearrange('t b -> t b'),
        nn.Embedding(vocab_size, embedding_dim),
        Reduce('t b c -> b c', 'mean'),
        nn.Linear(embedding_dim, output_dim),
        Rearrange('b c -> b c'),
    )

Some comments on new code:

CNNs for text classification

class CNNOld(nn.Module):
    def __init__(self, vocab_size, embedding_dim, n_filters, filter_sizes, output_dim, dropout):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.conv_0 = nn.Conv2d(in_channels=1, out_channels=n_filters, kernel_size=(filter_sizes[0],embedding_dim))
        self.conv_1 = nn.Conv2d(in_channels=1, out_channels=n_filters, kernel_size=(filter_sizes[1],embedding_dim))
        self.conv_2 = nn.Conv2d(in_channels=1, out_channels=n_filters, kernel_size=(filter_sizes[2],embedding_dim))
        self.fc = nn.Linear(len(filter_sizes)*n_filters, output_dim)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x):
        
        #x = [sent len, batch size]
        
        x = x.permute(1, 0)
                
        #x = [batch size, sent len]
        
        embedded = self.embedding(x)
                
        #embedded = [batch size, sent len, emb dim]
        
        embedded = embedded.unsqueeze(1)
        
        #embedded = [batch size, 1, sent len, emb dim]
        
        conved_0 = F.relu(self.conv_0(embedded).squeeze(3))
        conved_1 = F.relu(self.conv_1(embedded).squeeze(3))
        conved_2 = F.relu(self.conv_2(embedded).squeeze(3))
            
        #conv_n = [batch size, n_filters, sent len - filter_sizes[n]]
        
        pooled_0 = F.max_pool1d(conved_0, conved_0.shape[2]).squeeze(2)
        pooled_1 = F.max_pool1d(conved_1, conved_1.shape[2]).squeeze(2)
        pooled_2 = F.max_pool1d(conved_2, conved_2.shape[2]).squeeze(2)
        
        #pooled_n = [batch size, n_filters]
        
        cat = self.dropout(torch.cat((pooled_0, pooled_1, pooled_2), dim=1))

        #cat = [batch size, n_filters * len(filter_sizes)]
            
        return self.fc(cat)
class CNNNew(nn.Module):
    def __init__(self, vocab_size, embedding_dim, n_filters, filter_sizes, output_dim, dropout):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.convs = nn.ModuleList([
            nn.Conv1d(embedding_dim, n_filters, kernel_size=size) for size in filter_sizes
        ])
        self.fc = nn.Linear(len(filter_sizes) * n_filters, output_dim)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x):
        x = rearrange(x, 't b -> t b')
        emb = rearrange(self.embedding(x), 't b c -> b c t')
        pooled = [reduce(conv(emb), 'b c t -> b c', 'max') for conv in self.convs]
        concatenated = rearrange(pooled, 'filter b c -> b (filter c)')
        return self.fc(self.dropout(F.relu(concatenated)))

Highway convolutions

class HighwayConv1dOld(nn.Conv1d):
    def forward(self, inputs):
        L = super(HighwayConv1dOld, self).forward(inputs)
        H1, H2 = torch.chunk(L, 2, 1)  # chunk at the feature dim
        torch.sigmoid_(H1)
        return H1 * H2 + (1.0 - H1) * inputs
class HighwayConv1dNew(nn.Conv1d):
    def forward(self, inputs):
        L = super().forward(inputs)
        H1, H2 = rearrange(L, 'b (split c) t -> split b c t', split=2)
        torch.sigmoid_(H1)
        return H1 * H2 + (1.0 - H1) * inputs

Tacotron's CBHG module

class CBHG_Old(nn.Module):
    """CBHG module: a recurrent neural network composed of:
        - 1-d convolution banks
        - Highway networks + residual connections
        - Bidirectional gated recurrent units
    """

    def __init__(self, in_dim, K=16, projections=[128, 128]):
        super(CBHG, self).__init__()
        self.in_dim = in_dim
        self.relu = nn.ReLU()
        self.conv1d_banks = nn.ModuleList(
            [BatchNormConv1d(in_dim, in_dim, kernel_size=k, stride=1,
                             padding=k // 2, activation=self.relu)
             for k in range(1, K + 1)])
        self.max_pool1d = nn.MaxPool1d(kernel_size=2, stride=1, padding=1)

        in_sizes = [K * in_dim] + projections[:-1]
        activations = [self.relu] * (len(projections) - 1) + [None]
        self.conv1d_projections = nn.ModuleList(
            [BatchNormConv1d(in_size, out_size, kernel_size=3, stride=1,
                             padding=1, activation=ac)
             for (in_size, out_size, ac) in zip(
                 in_sizes, projections, activations)])

        self.pre_highway = nn.Linear(projections[-1], in_dim, bias=False)
        self.highways = nn.ModuleList(
            [Highway(in_dim, in_dim) for _ in range(4)])

        self.gru = nn.GRU(
            in_dim, in_dim, 1, batch_first=True, bidirectional=True)
def forward_old(self, inputs):
    # (B, T_in, in_dim)
    x = inputs

    # Needed to perform conv1d on time-axis
    # (B, in_dim, T_in)
    if x.size(-1) == self.in_dim:
        x = x.transpose(1, 2)

    T = x.size(-1)

    # (B, in_dim*K, T_in)
    # Concat conv1d bank outputs
    x = torch.cat([conv1d(x)[:, :, :T] for conv1d in self.conv1d_banks], dim=1)
    assert x.size(1) == self.in_dim * len(self.conv1d_banks)
    x = self.max_pool1d(x)[:, :, :T]

    for conv1d in self.conv1d_projections:
        x = conv1d(x)

    # (B, T_in, in_dim)
    # Back to the original shape
    x = x.transpose(1, 2)

    if x.size(-1) != self.in_dim:
        x = self.pre_highway(x)

    # Residual connection
    x += inputs
    for highway in self.highways:
        x = highway(x)

    # (B, T_in, in_dim*2)
    outputs, _ = self.gru(x)

    return outputs
def forward_new(self, inputs, input_lengths=None):
    x = rearrange(inputs, 'b t c -> b c t')
    _, _, T = x.shape
    # Concat conv1d bank outputs
    x = rearrange([conv1d(x)[:, :, :T] for conv1d in self.conv1d_banks], 
                 'bank b c t -> b (bank c) t', c=self.in_dim)
    x = self.max_pool1d(x)[:, :, :T]

    for conv1d in self.conv1d_projections:
        x = conv1d(x)
    x = rearrange(x, 'b c t -> b t c')
    if x.size(-1) != self.in_dim:
        x = self.pre_highway(x)

    # Residual connection
    x += inputs
    for highway in self.highways:
        x = highway(x)

    # (B, T_in, in_dim*2)
    outputs, _ = self.gru(self.highways(x))

    return outputs    

There is still a large room for improvements, but in this example only forward function was changed

Simple attention

Good news: there is no more need to guess order of dimensions. Neither for inputs nor for outputs

class Attention(nn.Module):
    def __init__(self):
        super(Attention, self).__init__()
    
    def forward(self, K, V, Q):
        A = torch.bmm(K.transpose(1,2), Q) / np.sqrt(Q.shape[1])
        A = F.softmax(A, 1)
        R = torch.bmm(V, A)
        return torch.cat((R, Q), dim=1)
def attention(K, V, Q):
    _, n_channels, _ = K.shape
    A = torch.einsum('bct,bcl->btl', [K, Q])
    A = F.softmax(A * n_channels ** (-0.5), 1)
    R = torch.einsum('bct,btl->bcl', [V, A])
    return torch.cat((R, Q), dim=1)

Transformer's attention needs more attention

class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''

    def __init__(self, temperature, attn_dropout=0.1):
        super().__init__()
        self.temperature = temperature
        self.dropout = nn.Dropout(attn_dropout)
        self.softmax = nn.Softmax(dim=2)

    def forward(self, q, k, v, mask=None):

        attn = torch.bmm(q, k.transpose(1, 2))
        attn = attn / self.temperature

        if mask is not None:
            attn = attn.masked_fill(mask, -np.inf)

        attn = self.softmax(attn)
        attn = self.dropout(attn)
        output = torch.bmm(attn, v)

        return output, attn



class MultiHeadAttentionOld(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k)
        self.w_ks = nn.Linear(d_model, n_head * d_k)
        self.w_vs = nn.Linear(d_model, n_head * d_v)
        nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))

        self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
        self.layer_norm = nn.LayerNorm(d_model)

        self.fc = nn.Linear(n_head * d_v, d_model)
        nn.init.xavier_normal_(self.fc.weight)

        self.dropout = nn.Dropout(dropout)


    def forward(self, q, k, v, mask=None):
        
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        
        sz_b, len_q, _ = q.size()
        sz_b, len_k, _ = k.size()
        sz_b, len_v, _ = v.size()
        
        residual = q
        
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
        
        q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk
        k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk
        v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv
        
        mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
        output, attn = self.attention(q, k, v, mask=mask)
        
        output = output.view(n_head, sz_b, len_q, d_v)
        output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv)
        
        output = self.dropout(self.fc(output))
        output = self.layer_norm(output + residual)
        
        return output, attn
class MultiHeadAttentionNew(nn.Module):
    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()
        self.n_head = n_head
        
        self.w_qs = nn.Linear(d_model, n_head * d_k)
        self.w_ks = nn.Linear(d_model, n_head * d_k)
        self.w_vs = nn.Linear(d_model, n_head * d_v)
        
        nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))
        
        self.fc = nn.Linear(n_head * d_v, d_model)
        nn.init.xavier_normal_(self.fc.weight)
        self.dropout = nn.Dropout(p=dropout)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, q, k, v, mask=None):
        residual = q
        q = rearrange(self.w_qs(q), 'b l (head k) -> head b l k', head=self.n_head)
        k = rearrange(self.w_ks(k), 'b t (head k) -> head b t k', head=self.n_head)
        v = rearrange(self.w_vs(v), 'b t (head v) -> head b t v', head=self.n_head)
        attn = torch.einsum('hblk,hbtk->hblt', [q, k]) / np.sqrt(q.shape[-1])
        if mask is not None:
            attn = attn.masked_fill(mask[None], -np.inf)
        attn = torch.softmax(attn, dim=3)
        output = torch.einsum('hblt,hbtv->hblv', [attn, v])
        output = rearrange(output, 'head b l v -> b l (head v)')
        output = self.dropout(self.fc(output))
        output = self.layer_norm(output + residual)
        return output, attn
    

Benefits of new implementation

Self-attention GANs

SAGANs are currently SotA for image generation, and can be simplified using same tricks.

class Self_Attn_Old(nn.Module):
    """ Self attention Layer"""
    def __init__(self,in_dim,activation):
        super(Self_Attn_Old,self).__init__()
        self.chanel_in = in_dim
        self.activation = activation
        
        self.query_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1)
        self.key_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1)
        self.value_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim , kernel_size= 1)
        self.gamma = nn.Parameter(torch.zeros(1))
        
        self.softmax  = nn.Softmax(dim=-1) #

    def forward(self, x):
        """
            inputs :
                x : input feature maps( B X C X W X H)
            returns :
                out : self attention value + input feature 
                attention: B X N X N (N is Width*Height)
        """
        
        m_batchsize,C,width ,height = x.size()
        proj_query  = self.query_conv(x).view(m_batchsize,-1,width*height).permute(0,2,1) # B X CX(N)
        proj_key =  self.key_conv(x).view(m_batchsize,-1,width*height) # B X C x (*W*H)
        energy =  torch.bmm(proj_query,proj_key) # transpose check
        attention = self.softmax(energy) # BX (N) X (N) 
        proj_value = self.value_conv(x).view(m_batchsize,-1,width*height) # B X C X N

        out = torch.bmm(proj_value,attention.permute(0,2,1) )
        out = out.view(m_batchsize,C,width,height)
        
        out = self.gamma*out + x
        return out,attention
class Self_Attn_New(nn.Module):
    """ Self attention Layer"""
    def __init__(self, in_dim):
        super().__init__()
        self.query_conv = nn.Conv2d(in_dim, out_channels=in_dim//8, kernel_size=1)
        self.key_conv = nn.Conv2d(in_dim, out_channels=in_dim//8, kernel_size=1)
        self.value_conv = nn.Conv2d(in_dim, out_channels=in_dim, kernel_size=1)
        self.gamma = nn.Parameter(torch.zeros([1]))

    def forward(self, x):
        proj_query = rearrange(self.query_conv(x), 'b c h w -> b (h w) c')
        proj_key = rearrange(self.key_conv(x), 'b c h w -> b c (h w)')
        proj_value = rearrange(self.value_conv(x), 'b c h w -> b (h w) c')
        energy = torch.bmm(proj_query, proj_key)
        attention = F.softmax(energy, dim=2)
        out = torch.bmm(attention, proj_value)
        out = x + self.gamma * rearrange(out, 'b (h w) c -> b c h w',
                                         **parse_shape(x, 'b c h w'))
        return out, attention

Improving time sequence prediction

While this example was considered to be simplistic, I had to analyze surrounding code to understand what kind of input was expected. You can try yourself.

Additionally now the code works with any dtype, not only double; and new code supports using GPU.

class SequencePredictionOld(nn.Module):
    def __init__(self):
        super(SequencePredictionOld, self).__init__()
        self.lstm1 = nn.LSTMCell(1, 51)
        self.lstm2 = nn.LSTMCell(51, 51)
        self.linear = nn.Linear(51, 1)

    def forward(self, input, future = 0):
        outputs = []
        h_t = torch.zeros(input.size(0), 51, dtype=torch.double)
        c_t = torch.zeros(input.size(0), 51, dtype=torch.double)
        h_t2 = torch.zeros(input.size(0), 51, dtype=torch.double)
        c_t2 = torch.zeros(input.size(0), 51, dtype=torch.double)

        for i, input_t in enumerate(input.chunk(input.size(1), dim=1)):
            h_t, c_t = self.lstm1(input_t, (h_t, c_t))
            h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
            output = self.linear(h_t2)
            outputs += [output]
            
        for i in range(future):# if we should predict the future
            h_t, c_t = self.lstm1(output, (h_t, c_t))
            h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
            output = self.linear(h_t2)
            outputs += [output]
        outputs = torch.stack(outputs, 1).squeeze(2)
        return outputs
class SequencePredictionNew(nn.Module):
    def __init__(self):
        super(SequencePredictionNew, self).__init__()
        self.lstm1 = nn.LSTMCell(1, 51)
        self.lstm2 = nn.LSTMCell(51, 51)
        self.linear = nn.Linear(51, 1)

    def forward(self, input, future=0):
        b, t = input.shape
        h_t, c_t, h_t2, c_t2 = torch.zeros(4, b, 51, dtype=self.linear.weight.dtype, 
                                           device=self.linear.weight.device)

        outputs = []
        for input_t in rearrange(input, 'b t -> t b ()'):
            h_t, c_t = self.lstm1(input_t, (h_t, c_t))
            h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
            output = self.linear(h_t2)
            outputs += [output]
            
        for i in range(future): # if we should predict the future
            h_t, c_t = self.lstm1(output, (h_t, c_t))
            h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
            output = self.linear(h_t2)
            outputs += [output]
        return rearrange(outputs, 't b () -> b t')

Transforming spacial transformer network (STN)

class SpacialTransformOld(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        # Spatial transformer localization-network
        self.localization = nn.Sequential(
            nn.Conv2d(1, 8, kernel_size=7),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True),
            nn.Conv2d(8, 10, kernel_size=5),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True)
        )

        # Regressor for the 3 * 2 affine matrix
        self.fc_loc = nn.Sequential(
            nn.Linear(10 * 3 * 3, 32),
            nn.ReLU(True),
            nn.Linear(32, 3 * 2)
        )

        # Initialize the weights/bias with identity transformation
        self.fc_loc[2].weight.data.zero_()
        self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))

    # Spatial transformer network forward function
    def stn(self, x):
        xs = self.localization(x)
        xs = xs.view(-1, 10 * 3 * 3)
        theta = self.fc_loc(xs)
        theta = theta.view(-1, 2, 3)

        grid = F.affine_grid(theta, x.size())
        x = F.grid_sample(x, grid)

        return x
class SpacialTransformNew(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # Spatial transformer localization-network
        linear = nn.Linear(32, 3 * 2)
        # Initialize the weights/bias with identity transformation
        linear.weight.data.zero_()
        linear.bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
        
        self.compute_theta = nn.Sequential(
            nn.Conv2d(1, 8, kernel_size=7),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True),
            nn.Conv2d(8, 10, kernel_size=5),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True),
            Rearrange('b c h w -> b (c h w)', h=3, w=3),
            nn.Linear(10 * 3 * 3, 32),
            nn.ReLU(True),
            linear,
            Rearrange('b (row col) -> b row col', row=2, col=3),
        )

    # Spatial transformer network forward function
    def stn(self, x):
        grid = F.affine_grid(self.compute_theta(x), x.size())
        return F.grid_sample(x, grid)

Improving GLOW

That's a good old depth-to-space written manually!

Since GLOW is revertible, it will frequently rely on rearrange-like operations.

def unsqueeze2d_old(input, factor=2):
    assert factor >= 1 and isinstance(factor, int)
    factor2 = factor ** 2
    if factor == 1:
        return input
    size = input.size()
    B = size[0]
    C = size[1]
    H = size[2]
    W = size[3]
    assert C % (factor2) == 0, "{}".format(C)
    x = input.view(B, C // factor2, factor, factor, H, W)
    x = x.permute(0, 1, 4, 2, 5, 3).contiguous()
    x = x.view(B, C // (factor2), H * factor, W * factor)
    return x

def squeeze2d_old(input, factor=2):
    assert factor >= 1 and isinstance(factor, int)
    if factor == 1:
        return input
    size = input.size()
    B = size[0]
    C = size[1]
    H = size[2]
    W = size[3]
    assert H % factor == 0 and W % factor == 0, "{}".format((H, W))
    x = input.view(B, C, H // factor, factor, W // factor, factor)
    x = x.permute(0, 1, 3, 5, 2, 4).contiguous()
    x = x.view(B, C * factor * factor, H // factor, W // factor)
    return x
def unsqueeze2d_new(input, factor=2):
    return rearrange(input, 'b (c h2 w2) h w -> b c (h h2) (w w2)', h2=factor, w2=factor)

def squeeze2d_new(input, factor=2):
    return rearrange(input, 'b c (h h2) (w w2) -> b (c h2 w2) h w', h2=factor, w2=factor)

Detecting problems in YOLO detection

def YOLO_prediction_old(input, num_classes, num_anchors, anchors, stride_h, stride_w):
    bs = input.size(0)
    in_h = input.size(2)
    in_w = input.size(3)
    scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in anchors]

    prediction = input.view(bs, num_anchors,
                            5 + num_classes, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous()
    # Get outputs
    x = torch.sigmoid(prediction[..., 0])  # Center x
    y = torch.sigmoid(prediction[..., 1])  # Center y
    w = prediction[..., 2]  # Width
    h = prediction[..., 3]  # Height
    conf = torch.sigmoid(prediction[..., 4])  # Conf
    pred_cls = torch.sigmoid(prediction[..., 5:])  # Cls pred.

    FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
    LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
    # Calculate offsets for each grid
    grid_x = torch.linspace(0, in_w - 1, in_w).repeat(in_w, 1).repeat(
        bs * num_anchors, 1, 1).view(x.shape).type(FloatTensor)
    grid_y = torch.linspace(0, in_h - 1, in_h).repeat(in_h, 1).t().repeat(
        bs * num_anchors, 1, 1).view(y.shape).type(FloatTensor)
    # Calculate anchor w, h
    anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
    anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
    anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape)
    anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape)
    # Add offset and scale with anchors
    pred_boxes = FloatTensor(prediction[..., :4].shape)
    pred_boxes[..., 0] = x.data + grid_x
    pred_boxes[..., 1] = y.data + grid_y
    pred_boxes[..., 2] = torch.exp(w.data) * anchor_w
    pred_boxes[..., 3] = torch.exp(h.data) * anchor_h
    # Results
    _scale = torch.Tensor([stride_w, stride_h] * 2).type(FloatTensor)
    output = torch.cat((pred_boxes.view(bs, -1, 4) * _scale,
                        conf.view(bs, -1, 1), pred_cls.view(bs, -1, num_classes)), -1)
    return output
def YOLO_prediction_new(input, num_classes, num_anchors, anchors, stride_h, stride_w):
    raw_predictions = rearrange(input, 'b (anchor prediction) h w -> prediction b anchor h w', 
                                anchor=num_anchors, prediction=5 + num_classes)
    anchors = torch.FloatTensor(anchors).to(input.device)
    anchor_sizes = rearrange(anchors, 'anchor dim -> dim () anchor () ()')

    _, _, _, in_h, in_w = raw_predictions.shape
    grid_h = rearrange(torch.arange(in_h).float(), 'h -> () () h ()').to(input.device)
    grid_w = rearrange(torch.arange(in_w).float(), 'w -> () () () w').to(input.device)

    predicted_bboxes = torch.zeros_like(raw_predictions)
    predicted_bboxes[0] = (raw_predictions[0].sigmoid() + grid_w) * stride_w  # center x
    predicted_bboxes[1] = (raw_predictions[1].sigmoid() + grid_h) * stride_h  # center y
    predicted_bboxes[2:4] = (raw_predictions[2:4].exp()) * anchor_sizes  # bbox width and height
    predicted_bboxes[4] = raw_predictions[4].sigmoid()  # confidence
    predicted_bboxes[5:] = raw_predictions[5:].sigmoid()  # class predictions
    # merging all predicted bboxes for each image
    return rearrange(predicted_bboxes, 'prediction b anchor h w -> b (anchor h w) prediction')

We changed and fixed a lot:

Simpler output for a bunch of pictures

Next time you need to output drawings of you generative models, you can use this trick

device = 'cpu'
plt.imshow(np.transpose(vutils.make_grid(fake_batch.to(device)[:64], padding=2, normalize=True).cpu(),(1,2,0)))
padded = F.pad(fake_batch[:64], [1, 1, 1, 1])
plt.imshow(rearrange(padded, '(b1 b2) c h w -> (b1 h) (b2 w) c', b1=8).cpu())

Instead of conclusion

Better code is a vague term; to be specific, code is expected to be:

Provided examples show how to improve these criteria for deep learning code. And einops helps a lot.

Links