Skip to content

einops.rearrange

einops.rearrange is a reader-friendly smart element reordering for multidimensional tensors. This operation includes functionality of transpose (axes permutation), reshape (view), squeeze, unsqueeze, stack, concatenate and other operations.

Examples:

# suppose we have a set of 32 images in "h w c" format (height-width-channel)
>>> images = [np.random.randn(30, 40, 3) for _ in range(32)]

# stack along first (batch) axis, output is a single array
>>> rearrange(images, 'b h w c -> b h w c').shape
(32, 30, 40, 3)

# stacked and reordered axes to "b c h w" format
>>> rearrange(images, 'b h w c -> b c h w').shape
(32, 3, 30, 40)

# concatenate images along height (vertical axis), 960 = 32 * 30
>>> rearrange(images, 'b h w c -> (b h) w c').shape
(960, 40, 3)

# concatenated images along horizontal axis, 1280 = 32 * 40
>>> rearrange(images, 'b h w c -> h (b w) c').shape
(30, 1280, 3)

# flattened each image into a vector, 3600 = 30 * 40 * 3
>>> rearrange(images, 'b h w c -> b (c h w)').shape
(32, 3600)

# split each image into 4 smaller (top-left, top-right, bottom-left, bottom-right), 128 = 32 * 2 * 2
>>> rearrange(images, 'b (h1 h) (w1 w) c -> (b h1 w1) h w c', h1=2, w1=2).shape
(128, 15, 20, 3)

# space-to-depth operation
>>> rearrange(images, 'b (h h1) (w w1) c -> b h w (c h1 w1)', h1=2, w1=2).shape
(32, 15, 20, 12)

When composing axes, C-order enumeration used (consecutive elements have different last axis). Find more examples in einops tutorial.

Parameters:

Name Type Description Default
tensor Union[Tensor, List[Tensor]]

tensor of any supported library (e.g. numpy.ndarray, tensorflow, pytorch). list of tensors is also accepted, those should be of the same type and shape

required
pattern str

string, rearrangement pattern

required
axes_lengths Size

any additional specifications for dimensions

{}

Returns:

Type Description
Tensor

tensor of the same type as input. If possible, a view to the original tensor is returned.

Source code in einops/einops.py
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
def rearrange(tensor: Union[Tensor, List[Tensor]], pattern: str, **axes_lengths: Size) -> Tensor:
    """
    einops.rearrange is a reader-friendly smart element reordering for multidimensional tensors.
    This operation includes functionality of transpose (axes permutation), reshape (view), squeeze, unsqueeze,
    stack, concatenate and other operations.

    Examples:

    ```python
    # suppose we have a set of 32 images in "h w c" format (height-width-channel)
    >>> images = [np.random.randn(30, 40, 3) for _ in range(32)]

    # stack along first (batch) axis, output is a single array
    >>> rearrange(images, 'b h w c -> b h w c').shape
    (32, 30, 40, 3)

    # stacked and reordered axes to "b c h w" format
    >>> rearrange(images, 'b h w c -> b c h w').shape
    (32, 3, 30, 40)

    # concatenate images along height (vertical axis), 960 = 32 * 30
    >>> rearrange(images, 'b h w c -> (b h) w c').shape
    (960, 40, 3)

    # concatenated images along horizontal axis, 1280 = 32 * 40
    >>> rearrange(images, 'b h w c -> h (b w) c').shape
    (30, 1280, 3)

    # flattened each image into a vector, 3600 = 30 * 40 * 3
    >>> rearrange(images, 'b h w c -> b (c h w)').shape
    (32, 3600)

    # split each image into 4 smaller (top-left, top-right, bottom-left, bottom-right), 128 = 32 * 2 * 2
    >>> rearrange(images, 'b (h1 h) (w1 w) c -> (b h1 w1) h w c', h1=2, w1=2).shape
    (128, 15, 20, 3)

    # space-to-depth operation
    >>> rearrange(images, 'b (h h1) (w w1) c -> b h w (c h1 w1)', h1=2, w1=2).shape
    (32, 15, 20, 12)

    ```

    When composing axes, C-order enumeration used (consecutive elements have different last axis).
    Find more examples in einops tutorial.

    Parameters:
        tensor: tensor of any supported library (e.g. numpy.ndarray, tensorflow, pytorch).
                list of tensors is also accepted, those should be of the same type and shape
        pattern: string, rearrangement pattern
        axes_lengths: any additional specifications for dimensions

    Returns:
        tensor of the same type as input. If possible, a view to the original tensor is returned.

    """
    return reduce(tensor, pattern, reduction="rearrange", **axes_lengths)