Skip to content

einops.repeat

einops.repeat allows reordering elements and repeating them in arbitrary combinations. This operation includes functionality of repeat, tile, and broadcast functions.

Examples for repeat operation:

# a grayscale image (of shape height x width)
>>> image = np.random.randn(30, 40)

# change it to RGB format by repeating in each channel
>>> repeat(image, 'h w -> h w c', c=3).shape
(30, 40, 3)

# repeat image 2 times along height (vertical axis)
>>> repeat(image, 'h w -> (repeat h) w', repeat=2).shape
(60, 40)

# repeat image 2 time along height and 3 times along width
>>> repeat(image, 'h w -> (h2 h) (w3 w)', h2=2, w3=3).shape
(60, 120)

# convert each pixel to a small square 2x2. Upsample image by 2x
>>> repeat(image, 'h w -> (h h2) (w w2)', h2=2, w2=2).shape
(60, 80)

# pixelate image first by downsampling by 2x, then upsampling
>>> downsampled = reduce(image, '(h h2) (w w2) -> h w', 'mean', h2=2, w2=2)
>>> repeat(downsampled, 'h w -> (h h2) (w w2)', h2=2, w2=2).shape
(30, 40)

When composing axes, C-order enumeration used (consecutive elements have different last axis). Find more examples in einops tutorial.

Parameters:

Name Type Description Default
tensor Union[Tensor, List[Tensor]]

tensor of any supported library (e.g. numpy.ndarray, tensorflow, pytorch). list of tensors is also accepted, those should be of the same type and shape

required
pattern str

string, rearrangement pattern

required
axes_lengths Size

any additional specifications for dimensions

{}

Returns:

Type Description
Tensor

Tensor of the same type as input. If possible, a view to the original tensor is returned.

Source code in einops/einops.py
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
def repeat(tensor: Union[Tensor, List[Tensor]], pattern: str, **axes_lengths: Size) -> Tensor:
    """
    einops.repeat allows reordering elements and repeating them in arbitrary combinations.
    This operation includes functionality of repeat, tile, and broadcast functions.

    Examples for repeat operation:

    ```python
    # a grayscale image (of shape height x width)
    >>> image = np.random.randn(30, 40)

    # change it to RGB format by repeating in each channel
    >>> repeat(image, 'h w -> h w c', c=3).shape
    (30, 40, 3)

    # repeat image 2 times along height (vertical axis)
    >>> repeat(image, 'h w -> (repeat h) w', repeat=2).shape
    (60, 40)

    # repeat image 2 time along height and 3 times along width
    >>> repeat(image, 'h w -> (h2 h) (w3 w)', h2=2, w3=3).shape
    (60, 120)

    # convert each pixel to a small square 2x2. Upsample image by 2x
    >>> repeat(image, 'h w -> (h h2) (w w2)', h2=2, w2=2).shape
    (60, 80)

    # pixelate image first by downsampling by 2x, then upsampling
    >>> downsampled = reduce(image, '(h h2) (w w2) -> h w', 'mean', h2=2, w2=2)
    >>> repeat(downsampled, 'h w -> (h h2) (w w2)', h2=2, w2=2).shape
    (30, 40)

    ```

    When composing axes, C-order enumeration used (consecutive elements have different last axis).
    Find more examples in einops tutorial.

    Parameters:
        tensor: tensor of any supported library (e.g. numpy.ndarray, tensorflow, pytorch).
            list of tensors is also accepted, those should be of the same type and shape
        pattern: string, rearrangement pattern
        axes_lengths: any additional specifications for dimensions

    Returns:
        Tensor of the same type as input. If possible, a view to the original tensor is returned.

    """
    return reduce(tensor, pattern, reduction="repeat", **axes_lengths)